Wednesday, January 22, 2014

We Are Each A Community

Lactobacillus (the purple rod-shaped things)
is a common bacterial species in reproductive
tracts. Image by Janice Carr from the
CDC at Wikimedia Commons.

In our world of antibacterial soaps, we have learned that bacteria are evil, dirty, sickness-causing agents to be eliminated at all costs. Although some bacteria can cause sickness, bacteria in general are actually a critical component of animal bodies. A human body has ten times as many bacterial cells as human cells and a hundred times as many bacterial genes as human genes, and this pattern is likely true for most animals. We animals have bacterial communities living on our skin, fur, feathers, scales and exoskeletons. We have bacteria in our guts, respiratory systems and reproductive tracts. And bacteria live in glands that are specialized for grooming or scent communication. These bacteria play critical roles not just in how our bodies work, but also in how we behave.

This week at Accumulating Glitches I talk about how all animals (including ourselves) include a community of microbes, such as bacteria. Even more amazing is that many of these bacteria are critical for our health and behavior. Check it out here.

And to learn more, check this out:

Archie, E.A., & Theis, K.R. (2011). Animal behaviour meets microbial ecology Animal Behaviour, 82, 425-436 DOI: 10.1016/j.anbehav.2011.05.029

Wednesday, January 15, 2014

Caught in My Web: The Secret Lives of the Animals Around Us

Image by Luc Viatour at Wikimedia.

Most of us are surrounded by animals that we take for granted every day. We see them sleep and eat and clean themselves, and then sleep again. But our pets and yard-critters have secret and interesting lives. This week in Caught in My Web, we explore some of the lesser-known secrets of the animals around us.

1. Your dog poops in alignment with the Earth’s magnetic field.

2.  Your cat is just using you.

3. Some of the fish in your fish tank may change sex:

4. The birds at your birdfeeders have personalities, and some are liars.

5. Squirrels are the masters of… well, just about everything.

Wednesday, January 8, 2014

Freezing the Winter Away

The clutches of the Polar Vortex are finally releasing its grasp on us and we can be thankful for our home heating, our layers of warm clothing, and most of all, our bodies’ abilities to generate heat. But it is times like these that make me wonder about our friends that live outside year-round… especially those that don’t generate most of their own body heat. How do they survive these periods of intense cold? There are several species of North American frogs that have an unusual trick up their sleeve: They freeze nearly solid and still live to see the next spring.

This picture of a wood frog is by Ontley at Wikimedia Commons.
Frogs are ectothermic, meaning they take on the temperature of their surroundings rather than generate their own body heat. This introduces some intriguing questions about how these species even exist in northern climates that experience freezing temperatures every year. When various North American frog species (including wood frogs, spring peepers, western chorus frogs, and a few gray tree frog species) take on freezing winter temperatures, they actually allow their bodies to freeze nearly solid. For most species, this would be a deadly approach: a frozen circulatory system would halt the delivery of oxygen to cells, which require oxygen to generate the energy they need to do just about everything a cell does. Furthermore, jagged ice crystal edges could rupture the cells they are inside. Dead cells lead to dead organs, which in turn lead to dead animals. These freezing frogs have found the secrets to freezing without killing their cells.

The first secret of the freezing frogs is to spend the winter snuggled in the leaf litter below the snow. This environment insulates and protects the frogs from the deadly wind chills we have been facing for the last several days.

The second secret of the freezing frogs is a creative use of colligative properties. Colligative properties are properties of solutions that depend on the ratio of the number of liquid molecules to the number of molecules of stuff dissolved in that liquid. One of those properties is called freezing point depression: The temperature at which a liquid will freeze can be lowered by adding particles to it. (This is why salt is spread on roads in the winter). A critical component of the freezing frog strategy is for the liver to produce massive amounts of glucose in response to the start of freezing. This glucose is pumped throughout the body, which lowers the freezing point of all of the organs.

A third secret of the freezing frogs is the use of ice nucleating agents: proteins that actually encourage freezing. This may seem counterintuitive, but remember that ice crystals inside cells can cause them physical damage. By having a high concentration of ice nucleating agents in the fluid between the cells, this ensures that ice first forms in the spaces surrounding the cells. When ice forms, the ice crystals are made of only water molecules, which draws water out of the solution and leaves behind a higher concentration of other stuff (like glucose) in between the cells. The high concentration of glucose between the cells draws water out of the cells and into that space. This additional water also freezes. In the end, the cells are chock-full of particles, lowering their freezing temperature, and are surrounded by ice, which insulates the cells. Thus, this process of ice formation around the cells prevents ice from forming inside the cells.

A fourth secret of the freezing frogs is a metabolic shift. Most animal cells rely on oxygen to produce the energy they need to support their demands. But cells have ways of producing energy without oxygen too. These ways are not very efficient, but are useful when there is not enough oxygen available to meet demand (such as when a seal dives or a cheetah reaches burst speed). When freezing frogs start to freeze and oxygen delivery to the cells slows and eventually stops, their cells shift from an oxygen-reliant system of energy creation to an oxygen-independent system of energy creation. Additionally, freezing organs do less and don’t require as much energy anyway, so they can continue functioning at low levels for a long time if the freezing spell is prolonged.

When the environment warms up (as forecasters promise will happen), the body temperatures of these frogs raise and body fluids slowly become liquid again. The heart starts to beat again within hours of the start of thawing and oxygen can again be delivered around the body. The delivery of oxygen-carrying blood helps the rest of the organs return to their normal functions.

There are still many secrets of these freezing frogs left to uncover. Maybe you’ll be the one to do it… once we thaw out a bit.

Want to know more? Check these out:

1. Storey, K.B. (2004). Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance Cryobiology, 48, 134-145 DOI: 10.1016/j.cryobiol.2003.10.008

2. Layne, J.R., & Lee, R.E. (1995). Adaptations of frogs to survive freezing Climate Research, 5, 53-59 DOI: 10.3354/cr005053

Wednesday, January 1, 2014

Metabolism and Body Size Influence the Perception of Movement and Time

Zoetropes like this one have been used
for almost 2000 years. If you look in the
slits from the side, the image appears to
be animated. Image by Andrew Dunn
at Wikimedia Commons.
When we watch TV or a movie, we are essentially watching a series of still images presented in rapid succession… so rapid, in fact, that we perceive them to be a single moving image. The ability of movie-makers to convince us that still images are fluid in time is based on our physiology. Specifically, moving-pictures, as they were once called, rely on our critical flicker fusion frequency (CFF), the lowest speed at which we perceive a flashing light source to be a constant light. But we don't have our CFF so we can enjoy movies and TV; it came about from our need to identify and track moving objects.

The ability to identify and track moving objects is critically important for finding and catching prey, avoiding predators, and finding mates. It is these visual abilities that rely on an animal’s CFF. An animal with a low CFF will miss many visual details, like watching your TV with a fast-forward function that jumps ahead 15 seconds at a time. An animal with a high CFF will see all the details that happen in between with a fine-time-scale resolution. But if having a high CFF conveys such an advantage, why don’t all animals have a high CFF?

This week at Accumulating Glitches I talk about how an animal's size and metabolism can influence how it sees the world. Check it out here.

And to learn more, check this out:

Healy, K., McNally, L., Ruxton, G.D., Cooper, N., & Jackson, A.L. (2013). Metabolic rate and body size are linked with perception of temporal information Animal Behaviour, 86, 685-696 DOI: 10.1016/j.anbehav.2013.06.018